Appendix B Probability

Probability Spaces and Random Variables

A probability space is defined by a triple (Ω, \mathcal{F}, P) , where Ω is a given set of elementary outcomes, \mathcal{F} is a collection of subsets of Ω (each such subset *B* is called an *event*), and $P(\cdot)$ is a *probability measure* that assigns a nonnegative number P(B) to each subset *B* in \mathcal{F} .

The collection of subsets \mathcal{F} must satisfy

- If B is in \mathcal{F} , then so is its complement $\overline{B} = \{\omega \in \Omega : \omega \notin B\}$.
- If B_1, B_2, \ldots are events in \mathcal{F} , then $\bigcup_k B_k$ and $\bigcap_k B_k$ are also in \mathcal{F} .

The probability measure must satisfy

- $P(B) \ge 0$ for all $B \in \mathcal{F}$.
- $P(\Omega) = 1$
- If B_1, B_2, \ldots are disjoint events, the $P(\bigcup_k B_k) = \sum_k P(B_k)$.

A random variable is a function mapping elementary outcomes to real numbers, $X : \Omega \to \Re$ and is denoted $X(\omega)$ —or simply X, where the dependence on ω is implicit. The *cumulative distribution function* (c.d.f.) of a random variable X—or just *distribution function* for short—is defined by

$$F(x) = P(X \le x).$$

If X takes on only countable values, we define the *probability-mass function* (pmf) by the function

$$P(x) = P(X = x).$$

Such a random variable is said to be *discrete*. If *F* is differentiate, then the *probability-density function* is defined by

$$f(x) = \frac{\partial}{\partial x}F(x).$$

Such a random variable is said to be continuous.

Let $\mathbf{X} = (X_1, \dots, X_n)$ denote a vector of random variables and $\mathbf{x} = (x_1, \dots, x_n)$ a real vector. Then we define the *joint distribution* of X by

$$F(\mathbf{x}) = P(X_1 \leq x_1, \ldots, X_n \leq x_n).$$